Internal genomic regions mobilized for telomere maintenance in C. elegans
نویسندگان
چکیده
Because DNA polymerase cannot replicate telomeric DNA at linear chromosomal ends, eukaryotes have developed specific telomere maintenance mechanisms (TMMs). A major TMM involves specialized reverse transcriptase, telomerase. However, there also exist various telomerase-independent TMMs (TI-TMMs), which can arise both in pathological conditions (such as cancers) and during evolution. The TI-TMM in cancer cells is called alternative lengthening of telomeres (ALT), whose mechanism is not fully understood. We generated stably maintained telomerase-independent survivors from C. elegans telomerase mutants and found that, unlike previously described survivors in worms, these survivors "mobilize" specific internal sequence blocks for telomere lengthening, which we named TALTs (templates for ALT). The cis-duplication of internal genomic TALTs produces "reservoirs" of TALTs, whose trans-duplication occurs at all chromosome ends in the ALT survivors. Our discovery that different TALTs are utilized in different wild isolates provides insight into the molecular events leading to telomere evolution.
منابع مشابه
Telomere maintenance through recruitment of internal genomic regions
Cells surviving crisis are often tumorigenic and their telomeres are commonly maintained through the reactivation of telomerase. However, surviving cells occasionally activate a recombination-based mechanism called alternative lengthening of telomeres (ALT). Here we establish stably maintained survivors in telomerase-deleted Caenorhabditis elegans that escape from sterility by activating ALT. A...
متن کاملC. elegans survivors without telomerase
In most eukaryotic organisms with a linear genome, the telomerase complex is essential for telomere maintenance and, thus, for genomic integrity. Proper telomerase function in stem and germ cell populations counteracts replication-dependent telomere shortening. On the other hand, repression of telomerase expression in most somatic tissues limits the proliferative potential of these cells throug...
متن کاملThe Genetic Basis of Natural Variation in Caenorhabditis elegans Telomere Length
Telomeres are involved in the maintenance of chromosomes and the prevention of genome instability. Despite this central importance, significant variation in telomere length has been observed in a variety of organisms. The genetic determinants of telomere-length variation and their effects on organismal fitness are largely unexplored. Here, we describe natural variation in telomere length across...
متن کاملOrganismal propagation in the absence of a functional telomerase pathway in Caenorhabditis elegans
To counteract replication-dependent telomere shortening most eukaryotic cells rely on the telomerase pathway, which is crucial for the maintenance of proliferative potential of germ and stem cell populations of multicellular organisms. Likewise, cancer cells usually engage the telomerase pathway for telomere maintenance to gain immortality. However, in ∼10% of human cancers telomeres are mainta...
متن کاملThe shelterin protein POT-1 anchors Caenorhabditis elegans telomeres through SUN-1 at the nuclear periphery
Telomeres are specialized protein-DNA structures that protect chromosome ends. In budding yeast, telomeres form clusters at the nuclear periphery. By imaging telomeres in embryos of the metazoan Caenorhabditis elegans, we found that telomeres clustered only in strains that had activated an alternative telomere maintenance pathway (ALT). Moreover, as in yeast, the unclustered telomeres in wild-t...
متن کامل